Free Shipping on orders over 50$

British Pound Sterling - GBP Euro - EUR US Dollar - USD (EUR)

Welcom to Gentaur Biotech Products!

Porcine C-Type Natriuretic Peptide Elisa Kit (CNP

Be the first to review this product

Availability: In stock

€770.70
OR

Quick Overview

[#E07C0339] Porcine C-Type Natriuretic Peptide Elisa Kit (CNP

Details

E07C0339 | Porcine C-Type Natriuretic Peptide Elisa Kit (CNP, 96 Tests/kit
More informations about Porcine C-Type Natriuretic Peptide Elisa Kit (CNP in Antibody-antibodies.com

Product Tags

Use spaces to separate tags. Use single quotes (') for phrases.

(1) Deficiency of Natriuretic Peptide Receptor 2 Promotes Bicuspid Aortic Valves, Aortic Valve Disease, Left Ventricular Dysfunction, and Ascending Aortic Dilatations in Mice.[TOP]

Pubmed ID :29273600
Publication Date : //
Aortic valve disease is a cell-mediated process without effective pharmacotherapy. CNP (C-type natriuretic peptide) inhibits myofibrogenesis and osteogenesis of cultured valve interstitial cells and is downregulated in stenotic aortic valves. However, it is unknown whether CNP signaling regulates aortic valve health in vivo.

Authors : Blaser Mark C, Wei Kuiru, Adams Rachel L E, Zhou Yu-Qing, Caruso Laura-Lee, Mirzaei Zahra, Lam Alan Y-L, Tam Richard K K, Zhang Hangjun, Heximer Scott P, Henkelman R Mark, Simmons Craig A,



(2) Natriuretic peptide receptor 2 (NPR2) localized in bovine oocyte underlies a unique mechanism for C-type natriuretic peptide (CNP)-induced meiotic arrest.[TOP]

Pubmed ID :29080478
Publication Date : //
Meiosis is of prime importance for successful gametogenesis, and insufficient maintenance of oocyte meiotic arrest compromises oocyte developmental competence. Recent studies have demonstrated that the C-type natriuretic peptide (CNP)-Natriuretic peptide receptor 2 (NPR2) pathway can inhibit mammalian oocyte meiotic resumption. In mouse and porcine, the inhibitory effect of mural granulosa cell (MGC)-derived CNP on oocyte meiotic resumption is mediated by NPR2 localized in cumulus cells (CCs) surrounding the oocytes. However, in the present study, we identified a novel mechanism for CNP-induced meiotic arrest that appears to be unique to bovine oocytes. Unlike mouse and porcine, bovine NPR2 not only localizes in CCs, but also in oocyte membranes. We also showed that CNP can directly activate intra-oocyte cGMP production via NPR2 localized in oocyte membranes, in parallel with the CC-mediated pathway. Furthermore, we demonstrated that Npr2 expression in bovine CCs and oocytes were synergistically regulated by estradiol and oocyte-derived growth factors. Finally, based on the profound inhibitory effect of CNP on meiotic resumption, we established a natural factor synchronized in vitro oocyte maturation (NFSOM) system, which can significantly improve the developmental competence of matured oocytes, thereby resulting in higher in vitro embryo production efficiency. Taken together, our study not only provides new insight into understanding the crosstalk between oocytes and follicular somatic cells in mammals, but also presents a promising strategy for improving the in vitro oocyte maturation systems of assisted reproductive technology (ART).

Authors : Xi Guangyin, An Lei, Jia Zhenwei, Tan Kun, Zhang Jiaxin, Wang Zhuqing, Zhang Chao, Miao Kai, Wu Zhonghong, Tian Jianhui,



(3) Natriuretic peptides improve the developmental competence of in vitro cultured porcine oocytes.[TOP]

Pubmed ID :28558842
Publication Date : //
Natriuretic peptides (NPs), brain and C type NPs (BNP and CNP), were involved in the maintenance of porcine oocyte meiotic arrest. The present study investigated the effects of NPs on developmental competence of immature porcine oocytes with follicles of different sizes.

Authors : Zhang Yanhao, Wang Huarong, Liu Wei, Yang Ye, Wang Xiao, Zhang Zhiyuan, Guo Qirui, Wang Chao, Xia Guoliang,



(4) C-Type natriuretic peptide maintains domestic cat oocytes in meiotic arrest.[TOP]

Pubmed ID :25873238
Publication Date : //
Recent studies have shown that C-type natriuretic peptide (CNP; encoded by the natriuretic peptide C (NPPC) gene) plays an essential role in maintaining meiotic arrest of mouse and porcine oocytes. However, whether CNP inhibits feline meiotic resumption is not known. In the present study we used a domestic cat model to explore the role played by CNP in feline oocyte meiotic resumption. We determined mRNA expression of genes encoding CNP and its cognate receptor natriuretic peptide receptor 2 (NPR2) in antral follicles. NPPC mRNA was primarily expressed in mural granulosa cells, whereas NPR2 mRNA was predominantly expressed in cumulus cells. Following in vitro culture for 24h, 100nM CNP increased cGMP levels, and maintained meiotic arrest of oocytes associated with cumulus cells. When the duration of in vitro culture increased from 24h to 36h, the ability of CNP to maintain meiotic arrest decreased, and this was accompanied by a decrease in the steady state levels of NPR2 mRNA in cumulus cells. In addition, CNP decreased the rate of degeneration of oocytes. These results indicate that CNP is required to maintain meiotic arrest and prevent degeneration in domestic cat oocytes.

Authors : Zhong Yougang, Lin Jiabao, Liu Xiaoping, Hou Jian, Zhang Yong, Zhao Xingxu,



(5) Dipyridamole-induced C-type natriuretic peptide mRNA overexpression in a minipig model of pacing-induced left ventricular dysfunction.[TOP]

Pubmed ID :25613228
Publication Date : //
Dipyridamole (DP) restores ischemic tissue blood flow stimulating angiogenesis in eNOS-dependent pathways. C-type natriuretic peptide (CNP) is expected to mimic the migration-stimulatory effect of NO via a cGMP-dependent mechanism. Aim of this study was to assess the role of concomitant treatment with DP on CNP levels in blood and myocardial tissue of minipigs with left ventricular dysfunction (LVD) induced by pacing at 200bpm in the right ventricular apex. Minipigs with DP therapy (DP+, n=4) or placebo (DP-, n=4) and controls (C-SHAM, n=4) underwent 2D-EchoDoppler examination and blood collection before and after 4 weeks of pacing, when cardiac tissue was collected. Histological/immunohistochemical analyses were performed. CNP levels were determined by radioimmunoassay; cardiac CNP, BNP, natriuretic receptors expression by Real-Time PCR. After pacing, cardiac parameters resulted less impaired in DP+ compared to DP-. Histological sections presented normal morphology while the arteriolar density resulted: C-SHAM: 9.0±1.2; DP-: 4.9±0.3; DP+: 6.5±0.6number/mm(2); C-SHAM vs DP- and DP+ p=0.004, p=0.04, respectively. CNP mRNA resulted lower in DP- compared to C-SHAM and DP+ as well as NPR-B (p=0.011, DP- vs DP+). Both NPR-A/NPR-C mRNA expressions were significantly (p<0.001) lower both in DP- and DP+ compared to C-SHAM. BNP mRNA was higher in LVD. CNP plasma levels showed a similar trend with respect to gene expression (C-SHAM: 30.5±15; DP-: 18.6±5.5; DP+: 21.2±4.7pg/ml). These data suggest that DP may serve as a preconditioning agent to increase the protective CNP-mediated endocrine response in LVD. This response, mediated by its specific receptor NPR-B, may offer new insights into molecular targets for treatment of LVD.

Authors : Cabiati M, Burchielli S, Matteucci M, Svezia B, Panchetti L, Caselli C, Prescimone T, Morales M A, Del Ry S,



(6) Cyclic guanosine monophosphate does not inhibit gonadotropin-induced activation of mitogen-activated protein kinase 3/1 in pig cumulus-oocyte complexes.[TOP]

Pubmed ID :25567742
Publication Date : //
Recent results indicate a key role for cyclic guanosine monophosphate (cGMP) in the regulation of oocyte meiotic arrest in preovulatory mammalian follicles. The aim of our study was to determine whether the resumption of oocyte meiosis and expansion of cumulus cells in isolated pig cumulus-oocyte complexes (COCs) can be blocked by a high intracellular concentration of cGMP, and whether this effect is mediated by a cGMP-dependent inhibition of mitogen-activated protein kinase 3/1 (MAPK3/1).

Authors : Blaha Milan, Nemcova Lucie, Prochazka Radek,



(7) Cell surface protein disulfide isomerase regulates natriuretic peptide generation of cyclic guanosine monophosphate.[TOP]

Pubmed ID :25419565
Publication Date : //
The family of natriuretic peptides (NPs), including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), exert important and diverse actions for cardiovascular and renal homeostasis. The autocrine and paracrine functions of the NPs are primarily mediated through the cellular membrane bound guanylyl cyclase-linked receptors GC-A (NPR-A) and GC-B (NPR-B). As the ligands and receptors each contain disulfide bonds, a regulatory role for the cell surface protein disulfide isomerase (PDI) was investigated.

Authors : Pan Shuchong, Chen Horng H, Correia Cristina, Dai Haiming, Witt Tyra A, Kleppe Laurel S, Burnett John C, Simari Robert D,



(8) Epidermal growth factor-network signaling mediates luteinizing hormone regulation of BNP and CNP and their receptor NPR2 during porcine oocyte meiotic resumption.[TOP]

Pubmed ID :25348585
Publication Date : //
The epidermal growth factor (EGF) network, induced by luteinizing hormone (LH), plays an essential role during the regulation of oocyte maturation, cumulus expansion, and ovulation. Binding of brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) to natriuretic receptor 2 (NPR2) generates cyclic guanosine monophosphate (cGMP), a key inhibitor that sustains porcine oocyte meiotic arrest. This correlation suggests that LH interacts with natriuretic-peptide signaling, possibly via the EGF network, to promote porcine meiotic resumption. In testing this hypothesis, we found that the majority of porcine oocytes remain arrested in the germinal-vesicle stage after 44 hr of co-culturing cumulus-oocyte complexes with 10(7) granulosa cells, which secreted active BNP and CNP; these natriuretic peptides associate with NPR2 on cumulus cells, thereby inhibiting porcine oocyte maturation. This inhibitory effect of BNP and CNP was relieved by EGF-like growth factors, whose expression naturally increases in granulosa cells 18 hr after human chorionic gonadotropin injection. LH and the EGF-like peptide amphiregulin (AREG) decreased BNP and CNP production in granulosa cells and down-regulated NPR2 expression in cumulus cells, which together decreased oocyte cGMP to levels that permit meiotic resumption. The effects of AREG on the gene expression of natriuretic-peptide signaling components and on oocyte maturation were completely blocked by the EGF receptor kinase inhibitor AG1478; the effect of LH, however, was only partially reversed by AG1478. Based on these results, LH regulates natriuretic-peptide signaling, although other pathways also cooperate with the EGF network to induce porcine oocyte maturation.

Authors : Zhang Wenqiang, Chen Qian, Yang Ye, Liu Wei, Zhang Meijia, Xia Guoliang, Wang Chao,



(9) Brain natriuretic peptide and C-type natriuretic peptide maintain porcine oocyte meiotic arrest.[TOP]

Pubmed ID :24912131
Publication Date : //
Recent studies have shown that C-type natriuretic peptide (CNP) serves as a key control system during mouse oocyte maturation. We used pig models (in vitro and in vivo) to explore the role played by the natriuretic peptide family in porcine oocyte maturation. We reported the expression and location of natriuretic peptide system in different stages of porcine antral follicles. Atrial natriuretic peptide (ANP) and CNP were expressed primarily in granulosa cells, whereas brain natriuretic peptide (BNP) and natriuretic peptide receptor-B (NPRB) receptor were expressed in granulosa cells (both cumulus and mural granulosa cells) and thecal internal cells, and the natriuretic peptide receptor-A (NPRA) receptor predominantly in thecal cells. Upon in vitro culture, BNP and CNP maintained meiotic arrest of oocytes associated with cumulus cells. The expression levels of BNP, CNP, and the NPRB receptor increased upon treatment of prepubertal gilts with pregnant mare's serum gonadotropin and decreased upon subsequent human chorionic gonadotropin injection. Such dynamic changes in the expression of natriuretic peptides and their receptor paralleled the proportions of oocytes exhibiting nuclear maturation in vivo. These data indicated that BNP and CNP co-contributed to maintaining porcine meiotic arrest under physiological condition and lutenizing hormone (LH) relieved this inhibitory effect by decreasing the expression levels of BNP and CNP in vivo. Our present work, combined with previous data, improved the understanding of the oocyte meiotic arrest mechanisms and further revealed that natriuretic peptides serve as oocyte maturation inhibitor (OMI) to inhibit oocyte maturation in mammals.

Authors : Zhang Wenqiang, Yang Ye, Liu Wei, Chen Qian, Wang Huarong, Wang Xiao, Zhang Yanhao, Zhang Meijia, Xia Guoliang,



(10) New elements in the C-type natriuretic peptide signaling pathway inhibiting swine in vitro oocyte meiotic resumption.[TOP]

Pubmed ID :24899572
Publication Date : //
C-type natriuretic peptide (CNP) and its cognate receptor, natriuretic peptide receptor (NPR) B, have been shown to promote cGMP production in granulosa/cumulus cells. Once transferred to the oocyte through the gap junctions, the cGMP inhibits oocyte meiotic resumption. CNP has been shown to bind another natriuretic receptor, NPR-C. NPR-C is known to interact with and degrade bound CNP, and has been reported to possess signaling functions. Therefore, NPR-C could participate in the control of oocyte maturation during swine in vitro maturation (IVM). Here, we examine the effect of CNP signaling on meiotic resumption, the amount of cGMP and gap junctional communication (GJC) regulation during swine IVM. The results show an inhibitory effect of CNP in inhibiting oocyte meiotic resumption in follicle-stimulating hormone (FSH)-stimulated IVM. We also found that an NPR-C-specific agonist (cANP([4-23])) is likely to play a role in maintaining meiotic arrest during porcine IVM when in the presence of a suboptimal dose of CNP. Moreover, we show that, even if CNP can increase intracellular concentration of cGMP in cumulus-oocyte complexes, cANP((4-23)) had no impact on cGMP concentration, suggesting a potential cGMP-independent signaling pathway related to NPR-C activation. These data support a potential involvement of cANP((4-23)) through NPR-C in inhibiting oocyte meiotic resumption while in the presence of a suboptimal dose of CNP. The regulation of GJC was not altered by CNP, cANP((4-23)), or the combination of CNP and cANP((4-23)), supporting their potential contribution in sending signals to the oocytes. These findings offer promising insights in to new elements of the signaling pathways that may be involved in inhibiting resumption of meiosis during FSH-stimulated swine IVM.

Authors : Santiquet Nicolas, Papillon-Dion Emilie, Djender Nadjib, Guillemette Christine, Richard François J,