Free Shipping on orders over 50$

British Pound Sterling - GBP Euro - EUR US Dollar - USD (EUR)

Welcom to Gentaur Biotech Products!

Plant hormone abscisic acid,ABA ELISA Kit, Species Plant, Sample Type serum, plasma

Be the first to review this product

Availability: In stock


Quick Overview

[#CSB-E09159Pl] Plant hormone abscisic acid,ABA ELISA Kit, Species Plant, Sample Type serum, plasma


CSB-E09159Pl | Plant hormone abscisic acid,ABA ELISA Kit, Species Plant, Sample Type serum, plasma, 96T
More informations about Plant hormone abscisic acid,ABA ELISA Kit, Species Plant, Sample Type serum, plasma in

Product Tags

Use spaces to separate tags. Use single quotes (') for phrases.

(1) Responses of the weed species Bidens pilosa L. to exogenous application of the steroidal saponin protodioscin and the plant growth regulators 24-epibrassinolide, indol-3-acetic acid and abscisic acid.[TOP]

Pubmed ID :30341820
Publication Date : //
The exogenous applications of plant hormones and their analogues have been exploited to improve crop performance in the field. Protodioscin is a saponin whose steroidal moiety in its structure has some similarities with plant steroidal hormones brassinosteroids. To test the possibility that protodioscin acts as an agonist or antagonist of brassinosteroids or other plant growth regulator, in this work, we compared the responses of the weed species Bidens pilosa L. to treatment with protodioscin, brassinosteroids, auxins and abscisic acid (ABA). Protodioscin at concentrations ranging from 48 to 240 μM inhibited the growth of B. pilosa seedlings. The steroidal hormone 24-epibrassinolide (0.1 to 5 μM) also inhibited the growth of primary roots, but brassicasterol was inactive. Indole-3-acetic acid (IAA) at higher concentrations (0.5 to 10 μM) strongly inhibited the primary root length and the fresh weight of stems. ABA inhibited all parameters of seedling growth and also inhibited seed germination. The respiratory activity of primary roots (Potassium cyanide (KCN)-sensitive and KCN-insensitive respiration) was activated by protodioscin. IAA and ABA reduced the KCN-insensitive respiration. The content of malondialdehyde (MDA) in the primary roots was increased only by protodioscin treatment. All assayed compounds increased ascorbate peroxidase (APx) and peroxidase (POD) activity, with 24-epibrassinolide being much more active. The activity of catalase (CAT) was stimulated by protodioscin and 24-epibrassinolide. The overall results revealed that protodioscin was toxic to B. pilosa by a mechanism not related to plant growth regulator signalling; protodioscin caused a disturbance in mitochondrial respiratory activity, which could be related to the overproduction of ROS and consequent cell membrane damage. This article is protected by copyright. All rights reserved.

Authors : Mito Márcio Shigueaki, Silva Adriano Antonio, Kagami Fernanda Lima, Dario de Almeida Jéssica, Mantovanelli Gislaine Cristiane, Barbosa Mauro Cezar, Kern-Cardoso Kátia Aparecida, Ishii-Iwamoto Emy Luiza,

(2) Plant Hormone Signaling Crosstalks between Biotic and Abiotic Stress Responses.[TOP]

Pubmed ID :30336563
Publication Date : //
In the natural environment, plants are often bombarded by a combination of abiotic (such as drought, salt, heat or cold) and biotic (necrotrophic and biotrophic pathogens) stresses simultaneously. It is critical to understand how the various response pathways to these stresses interact with one another within the plants, and where the points of crosstalk occur which switch the responses from one pathway to another. Calcium sensors are often regarded as the first line of response to external stimuli to trigger downstream signaling. Abscisic acid (ABA) is a major phytohormone regulating stress responses, and it interacts with the jasmonic acid (JA) and salicylic acid (SA) signaling pathways to channel resources into mitigating the effects of abiotic stresses versus defending against pathogens. The signal transduction in these pathways are often carried out via GTP-binding proteins (G-proteins) which comprise of a large group of proteins that are varied in structures and functions. Deciphering the combined actions of these different signaling pathways in plants would greatly enhance the ability of breeders to develop food crops that can thrive in deteriorating environmental conditions under climate change, and that can maintain or even increase crop yield.

Authors : Ku Yee-Shan, Sintaha Mariz, Cheung Ming-Yan, Lam Hon-Ming,

(3) Expression of genes in the potential regulatory pathways controlling alternate bearing in 'Fuji' (Malus domestica Borkh.) apple trees during flower induction.[TOP]

Pubmed ID :30326437
Publication Date : //
Most perennial fruit trees have an alternate bearing problem where a heavy fruit load is produced one year (ON year) but few flowers and fruits produced the next year (OFF year), resulting in a significant fluctuation in production. In the present study, comparative transcriptome analysis of terminal buds of apple (Malus domestica Borkh., cv. Nagafu No. 2) trees was conducted during the floral induction period in the ON and OFF years to identify the potential regulatory pathways controlling alternate bearing. A total of 1027 differentially expressed genes (DEGs), most of which were involved in secondary metabolism, sugar metabolism, plant hormone pathways, were identified. The analysis focused on differences in sugar content and hormone levels between the ON and OFF trees. Sucrose content, zeatin-riboside (ZR), and abscisic acid (ABA) levels were lower in ON-year buds than in OFF-year buds. ON buds also had elevated levels of gibberellins (GAs), with a higher expression of GA20 oxidase (GA20ox) and a significant lower level of RGA-like2 (RGL2). Expression analyses also revealed a significantly higher level of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE genes (MdSPL1, MdSPL6 and MdSPL12) transcripts levels in buds of OFF trees at 45 days after full bloom (DAFB). LEAFY (LFY) expression increased significantly prior to flower induction in OFF buds. These findings provide new information of the role of hormones in alternate bearing, as well as other processes, and provide new insights into the molecular mechanisms regulating alternate bearing in perennial fruit trees.

Authors : Zuo Xiya, Zhang Dong, Wang Shixiang, Xing Libo, Li Youmei, Fan Sheng, Zhang Lizhi, Ma Juanjuan, Zhao Caiping, Shah Kamran, An Na, Han Mingyu,

(4) A genetic network mediating the control of bud break in hybrid aspen.[TOP]

Pubmed ID :30301891
Publication Date : //
In boreal and temperate ecosystems, temperature signal regulates the reactivation of growth (bud break) in perennials in the spring. Molecular basis of temperature-mediated control of bud break is poorly understood. Here we identify a genetic network mediating the control of bud break in hybrid aspen. The key components of this network are transcription factor SHORT VEGETATIVE PHASE-LIKE (SVL), closely related to Arabidopsis floral repressor SHORT VEGETATIVE PHASE, and its downstream target TCP18, a tree homolog of a branching regulator in Arabidopsis. SVL and TCP18 are downregulated by low temperature. Genetic evidence demonstrates their role as negative regulators of bud break. SVL mediates bud break by antagonistically acting on gibberellic acid (GA) and abscisic acid (ABA) pathways, which function as positive and negative regulators of bud break, respectively. Thus, our results reveal the mechanistic basis for temperature-cued seasonal control of a key phenological event in perennial plants.

Authors : Singh Rajesh Kumar, Maurya Jay P, Azeez Abdul, Miskolczi Pal, Tylewicz Szymon, Stojkovič Katja, Delhomme Nicolas, Busov Victor, Bhalerao Rishikesh P,

(5) Hormone dependent survival mechanisms of plants during post-waterlogging stress.[TOP]

Pubmed ID :30289381
Publication Date : //
Waterlogging stress has two phases like waterlogging phase and post-waterlogging phase where both are injurious to plants. Susceptible plants normally die at post-waterlogging phase due to damaged root system, sudden rexoygenation, dehydration and photoinhibition of the desubmerged tissues. Formation of reactive oxygen species (ROS) is the main result of reoxygenation stress that can cause oxidative damage of the functional tissues responsible for normal physiological activities. There are almost all types of hormones responsible to recover plants from these destructive phenomenons. Among these hormones ethylene and abscisic acid (ABA) are the main regulators to overcome the reoxygenation and drought like stresses in plants at post-waterlogging condition. The balanced crosstalk among the hormones is highly important for the survival of plants at these stresses. So this paper is completely a precise summary of hormonal homeostasis of post-waterlogged plants through physiological, biochemical and signaling pathways.

Authors : Bashar Kazi Khayrul,

(6) Phytohormones enhanced drought tolerance in plants: a coping strategy.[TOP]

Pubmed ID :30284160
Publication Date : //
Drought stress is a severe environmental constraint among the emerging problems. Plants are highly vulnerable to drought stress and a severe decrease in yield was recorded in the last few decades. So, it is highly desirable to understand the mechanism of drought tolerance in plants and consequently enhance the tolerance against drought stress. Phytohormones are known to play vital roles in regulating various phenomenons in plants to acclimatize to varying drought environment. Abscisic acid (ABA) is considered the main hormone which intensifies drought tolerance in plants through various morpho-physiological and molecular processes including stomata regulation, root development, and initiation of ABA-dependent pathway. In addition, jasmonic acid (JA), salicylic acid (SA) ethylene (ET), auxins (IAA), gibberellins (GAs), cytokinins (CKs), and brassinosteroids (BRs) are also very important phytohormones to congregate the challenges of drought stress. However, these hormones are usually cross talk with each other to increase the survival of plants in drought conditions. On the other hand, the transgenic approach is currently the most accepted technique to engineer the genes responsible for the synthesis of phytohormones in drought stress response. Our present review highlights the regulatory circuits of phytohormones in drought tolerance mechanism.

Authors : Ullah Abid, Manghwar Hakim, Shaban Muhammad, Khan Aamir Hamid, Akbar Adnan, Ali Usman, Ali Ehsan, Fahad Shah,

(7) Abscisic acid-independent stomatal CO signal transduction pathway and convergence of CO and ABA signaling downstream of OST1 kinase.[TOP]

Pubmed ID :30282744
Publication Date : //
Stomatal pore apertures are narrowing globally due to the continuing rise in atmospheric [CO]. CO elevation and the plant hormone abscisic acid (ABA) both induce rapid stomatal closure. However, the underlying signal transduction mechanisms for CO/ABA interaction remain unclear. Two models have been considered: () CO elevation enhances ABA concentrations and/or early ABA signaling in guard cells to induce stomatal closure and () CO signaling merges with ABA at OST1/SnRK2.6 protein kinase activation. Here we use genetics, ABA-reporter imaging, stomatal conductance, patch clamp, and biochemical analyses to investigate these models. The strong ABA biosynthesis mutants and remain responsive to CO elevation. Rapid CO-triggered stomatal closure in PYR/RCAR ABA receptor quadruple and hextuple mutants is not disrupted but delayed. Time-resolved ABA concentration monitoring in guard cells using a FRET-based ABA-reporter, ABAleon2.15, and ABA reporter gene assays suggest that CO elevation does not trigger [ABA] increases in guard cells, in contrast to control ABA exposures. Moreover, CO activates guard cell S-type anion channels in and ABA receptor hextuple mutants. Unexpectedly, in-gel protein kinase assays show that unlike ABA, elevated CO does not activate OST1/SnRK2 kinases in guard cells. The present study points to a model in which rapid CO signal transduction leading to stomatal closure occurs via an ABA-independent pathway downstream of OST1/SnRK2.6. Basal ABA signaling and OST1/SnRK2 activity are required to facilitate the stomatal response to elevated CO These findings provide insights into the interaction between CO/ABA signal transduction in light of the continuing rise in atmospheric [CO].

Authors : Hsu Po-Kai, Takahashi Yohei, Munemasa Shintaro, Merilo Ebe, Laanemets Kristiina, Waadt Rainer, Pater Dianne, Kollist Hannes, Schroeder Julian I,

(8) The Xerobranching Response Represses Lateral Root Formation When Roots Are Not in Contact with Water.[TOP]

Pubmed ID :30270188
Publication Date : //
Efficient soil exploration by roots represents an important target for crop improvement and food security [1, 2]. Lateral root (LR) formation is a key trait for optimizing soil foraging for crucial resources such as water and nutrients. Here, we report an adaptive response termed xerobranching, exhibited by cereal roots, that represses branching when root tips are not in contact with wet soil. Non-invasive X-ray microCT imaging revealed that cereal roots rapidly repress LR formation as they enter an air space within a soil profile and are no longer in contact with water. Transcript profiling of cereal root tips revealed that transient water deficit triggers the abscisic acid (ABA) response pathway. In agreement with this, exogenous ABA treatment can mimic repression of LR formation under transient water deficit. Genetic analysis in Arabidopsis revealed that ABA repression of LR formation requires the PYR/PYL/RCAR-dependent signaling pathway. Our findings suggest that ABA acts as the key signal regulating xerobranching. We conclude that this new ABA-dependent adaptive mechanism allows roots to rapidly respond to changes in water availability in their local micro-environment and to use internal resources efficiently.

Authors : Orman-Ligeza Beata, Morris Emily C, Parizot Boris, Lavigne Tristan, Babé Aurelie, Ligeza Aleksander, Klein Stephanie, Sturrock Craig, Xuan Wei, Novák Ondřey, Ljung Karin, Fernandez Maria A, Rodriguez Pedro L, Dodd Ian C, De Smet Ive, Chaumont Francois, Batoko Henri, Périlleux Claire, Lynch Jonathan P, Bennett Malcolm J, Beeckman Tom, Draye Xavier,

(9) Profiles of Endogenous Phytohormones Over the Course of Norway Spruce Somatic Embryogenesis.[TOP]

Pubmed ID :30237806
Publication Date : //
Conifer somatic embryogenesis (SE) is a process driven by exogenously supplied plant growth regulators (PGRs). Exogenous PGRs and endogenous phytohormones trigger particular ontogenetic events. Complex mechanisms involving a number of endogenous phytohormones control the differentiation of cells and tissues, as well as the establishment of structures and organs. Most of the mechanisms and hormonal functions in the SE of conifers have not yet been described. With the aim to better understand these mechanisms, we provided detailed analysis of the spectrum of endogenous phytohormones over the course of SE in Norway spruce . Concentrations of endogenous phytohormones including auxins, cytokinins (CKs), abscisic acid (ABA), jasmonates, and salicylic acid (SA) in somatic embryos were analyzed by HPLC-ESI-MS/MS. The results revealed that the concentrations of particular phytohormone classes varied substantially between proliferation, maturation, desiccation, and germination. Endogenous ABA showed a maximum concentration at the maturation stage, which reflected the presence of exogenous ABA in the medium and demonstrated its efficient perception by the embryos as a prerequisite for their further development. Auxins also had concentration maxima at the maturation stage, suggesting a role in embryo polarization. Endogenous jasmonates were detected in conifer somatic embryos for the first time, and reached maxima at germination. According to our knowledge, we have presented evidence for the involvement of the non-indole auxin phenylacetic acid, -zeatin- and dihydrozeatin-type CKs and SA in SE for the first time. The presented results represent the currently most comprehensive overview of plant hormone levels in embryos throughout the whole process of conifer SE. The differences in concentrations of various classes of phytohormones over the proliferation, maturation, desiccation, and germination in somatic embryos clearly indicate correlations between endogenous phytohormone profiles and particular developmental stages of the SE of conifers.

Authors : Vondrakova Zuzana, Dobrev Petre I, Pesek Bedrich, Fischerova Lucie, Vagner Martin, Motyka Vaclav,

(10) Regulated reconstitution of spindle checkpoint arrest and silencing through chemically induced dimerisation .[TOP]

Pubmed ID :30237224
Publication Date : //
Chemically induced dimerisation (CID) uses small molecules to control specific protein-protein interactions. We employed CID dependent on the plant hormone abscisic acid (ABA) to reconstitute spindle checkpoint signalling in fission yeast. The spindle checkpoint signal usually originates at unattached or inappropriately attached kinetochores. These are complex, multiprotein structures with several important functions. To bypass kinetochore complexity, we took a reductionist approach to studying checkpoint signalling. We generated a synthetic checkpoint arrest ectopically by inducing heterodimerisation of the checkpoint proteins Mph1 (the fission yeast homologue of Mps1) and Spc7 (the fission yeast homologue of KNL1). These proteins were engineered such that they cannot localise to kinetochores, and only form a complex in the presence of ABA. Using this novel assay we were able to checkpoint arrest a synchronous population of cells within 30 min of ABA addition. This assay allows detailed genetic dissection of checkpoint activation and, importantly, also provides a valuable tool for studying checkpoint silencing. To analyse silencing of the checkpoint and the ensuing mitotic exit, we simply washed out the ABA from arrested fission yeast cells. We show here that silencing is critically dependent on protein phosphatase 1 (PP1) recruitment to Mph1-Spc7 signalling platforms.

Authors : Amin Priya, Soper Ní Chafraidh Sadhbh, Leontiou Ioanna, Hardwick Kevin G,